Hadoop & its Usage at Facebook

Dhruba Borthakur

Project Lead, Hadoop Distributed File System

dhruba@apache.org

Presented at the The Israeli Association of Grid Technologies July 15, 2009

Outline

- Architecture of Hadoop Distributed File System
- Synergies between Hadoop and Condor
- Hadoop Usage at Facebook

Who Am I?

- Hadoop FileSystem Project Lead
 - Core contributor since Hadoop's infancy
- Facebook (Hadoop, Hive, Scribe)
- Yahoo! (Hadoop in Yahoo Search)
- Veritas (San Point Direct, Veritas File System)
- IBM Transarc (Andrew File System)
- UW Computer Science Alumni (Condor Project)

Hadoop, Why?

- Need to process Multi Petabyte Datasets
- Expensive to build reliability in each application.
- Nodes fail every day
 - Failure is expected, rather than exceptional.
 - The number of nodes in a cluster is not constant.
- Need common infrastructure
 - Efficient, reliable, Open Source Apache License
- The above goals are same as Condor, but
 - Workloads are IO bound and not CPU bound

Hadoop History

- Dec 2004 Google GFS paper published
- July 2005 Nutch uses MapReduce
- Feb 2006 Starts as a Lucene subproject
- Apr 2007 Yahoo! on 1000-node cluster
- Jan 2008 An Apache Top Level Project
- Jul 2008 A 4000 node test cluster
- May 2009 Hadoop sorts Petabyte in 17 hours

Who uses Hadoop?

- Amazon/A9
- Facebook
- Google
- IBM
- Joost
- Last.fm
- New York Times
- PowerSet
- Veoh
- Yahoo!

What is Hadoop used for?

- Search
 - Yahoo, Amazon, Zvents
- Log processing
 - Facebook, Yahoo, ContextWeb. Joost, Last.fm
- Recommendation Systems
 - Facebook
- Data Warehouse
 - Facebook, AOL
- Video and Image Analysis
 - New York Times, Eyealike

Public Hadoop Clouds

- Hadoop Map-reduce on Amazon EC2
 - http://wiki.apache.org/hadoop/AmazonEC2
- IBM Blue Cloud
 - Partnering with Google to offer web-scale infrastructure
- Global Cloud Computing Testbed
 - Joint effort by Yahoo, HP and Intel

Commodity Hardware

Typically in 2 level architecture

- Nodes are commodity PCs
- 30-40 nodes/rack
- Uplink from rack is 3-4 gigabit
- Rack-internal is 1 gigabit

Goals of HDFS

- Very Large Distributed File System
 - 10K nodes, 100 million files, 10 PB
- Assumes Commodity Hardware
 - Files are replicated to handle hardware failure
 - Detect failures and recovers from them
- Optimized for Batch Processing
 - Data locations exposed so that computations can move to where data resides
 - Provides very high aggregate bandwidth
- User Space, runs on heterogeneous OS

Distributed File System

- Single Namespace for entire cluster
- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Files are broken up into blocks
 - Typically 128 MB block size
 - Each block replicated on multiple DataNodes
- Intelligent Client
 - Client can find location of blocks
 - Client accesses data directly from DataNode

HDFS Architecture

NameNode Metadata

Meta-data in Memory

- The entire metadata is in main memory
- No demand paging of meta-data

Types of Metadata

- List of files
- List of Blocks for each file
- List of DataNodes for each block
- File attributes, e.g creation time, replication factor

A Transaction Log

Records file creations, file deletions. etc

DataNode

A Block Server

- Stores data in the local file system (e.g. ext3)
- Stores meta-data of a block (e.g. CRC)
- Serves data and meta-data to Clients

Block Report

- Periodically sends a report of all existing blocks to the NameNode
- Facilitates Pipelining of Data
 - Forwards data to other specified DataNodes

Data Correctness

- Use Checksums to validate data
 - Use CRC32
- File Creation
 - Client computes checksum per 512 byte
 - DataNode stores the checksum
- File access
 - Client retrieves the data and checksum from DataNode
 - If Validation fails, Client tries other replicas

NameNode Failure

- A single point of failure
- Transaction Log stored in multiple directories
 - A directory on the local file system
 - A directory on a remote file system (NFS/CIFS)
- Need to develop a real HA solution

Rebalancer

- Goal: % disk full on DataNodes should be similar
 - Usually run when new DataNodes are added
 - Cluster is online when Rebalancer is active
 - Rebalancer is throttled to avoid network congestion
 - Command line tool

Hadoop Map/Reduce

- The Map-Reduce programming model
 - Framework for distributed processing of large data sets
 - Pluggable user code runs in generic framework
- Common design pattern in data processing cat * | grep | sort | unique -c | cat > file input | map | shuffle | reduce | output
- Natural for:
 - Log processing
 - Web search indexing
 - Ad-hoc queries

Hadoop and Condor

Condor Jobs on HDFS

- Run Condor jobs on Hadoop File System
 - Create HDFS using local disk on condor nodes
 - Use HDFS API to find data location
 - Place computation close to data location
- Support map-reduce data abstraction model

Job Scheduling

- Current state of affairs with Hadoop scheduler
 - FIFO and Fair Share scheduler
 - Checkpointing and parallelism tied together
- Topics for Research
 - Cycle scavenging scheduler
 - Separate checkpointing and parallelism
 - Use resource matchmaking to support heterogeneous Hadoop compute clusters
 - Scheduler and API for MPI workload

Dynamic-size HDFS clusters

Hadoop Dynamic Clouds

- Use Condor to manage HDFS configuration files
- Use Condor to start HDFS DataNodes
- Based on workloads, Condor can add additional DataNodes to a HDFS cluster
- Condor can move DataNodes from one HDFS cluster to another

Condor and Data Replicas

- Hadoop Data Replicas and Rebalancing
 - Based on access patterns, Condor can increase number of replicas of a HDFS block
 - If a condor job accesses data remotely, should it instruct HDFS to create a local copy of data?
 - Replicas across data centers (Condor Flocking?)

Condor as HDFS Watcher

- Typical Hadoop periodic jobs
 - Concatenate small HDFS files into larger ones
 - Periodic checksum validations of HDFS files
 - Periodic validations of HDFS transaction logs
 - Convert data from Izo to gzip compression
- Condor can intelligently schedule above jobs
 - Schedule during times of low load

HDFS High Availability

- Use Condor High Availability
 - Failover HDFS NameNode
 - Condor can move HDFS transaction log from old NameNode to new NameNode

Power Management

- Power Management
 - Major operating expense
- Condor Green
 - Analyze data-center heat map and shutdown DataNodes if possible
 - Power down CPU's when idle
 - Block placement based on access pattern
 - Move cold data to disks that need less power

Hadoop Cloud at Facebook

Who generates this data?

- Lots of data is generated on Facebook
 - 200+ million active users
 - 30 million users update their statuses at least once each day
 - More than 900 million photos uploaded to the site each month
 - More than 10 million videos uploaded each month
 - More than 1 billion pieces of content (web links, news stories, blog posts, notes, photos, etc.)
 shared each week

Where do we store this data?

- Hadoop/Hive Warehouse
 - 4800 cores, 2 PetaBytes (July 2009)
 - 4800 cores, 12 PetaBytes (Sept 2009)
- Hadoop Archival Store
 - -200 TB

Rate of Data Growth

Hadoop File System Size (Terabytes) by Date

Data Flow into Hadoop Cloud

Hadoop Scribe: Avoid Costly Filers

Data Usage

- Statistics per day:
 - 4 TB of compressed new data added per day
 - 55TB of compressed data scanned per day
 - 3200+ Hive jobs on production cluster per day
 - 80M compute minutes per day
- Barrier to entry is significantly reduced:
 - New engineers go though a Hive training session
 - 140+ people run jobs on Hadoop/Hive jobs
 - Analysts (non-engineers) use Hadoop through Hive

Hive Query Language

- SQL type query language on Hadoop
- Analytics SQL queries translate well to mapreduce
- Files are insufficient data management abstractions
 - Need Tables, schemas, partitions, indices

Archival: Move old data to cheap storage

Cluster Usage Dashboard

Summary

- Hadoop is the platform of choice for Storage Cloud
- Facebook a big contributor to Open Source Software
- Lots of synergy between Hadoop and Condor

Useful Links

- HDFS Design:
 - http://hadoop.apache.org/core/docs/current/hdfs_design.html
- Hadoop API:
 - http://hadoop.apache.org/core/docs/current/api/

